phylosignal
packageFirst, we load the package phylosignal
and the dataset carnivora
from adephylo
.
library(phylosignal)
library(adephylo)
library(ape)
library(phylobase)
data(carni19)
Here is a phylogenetic tree of 19 carnivora species.
tre <- read.tree(text=carni19$tre)
And we create a dataframe of 3 traits for the 19 carnivora species. - Body mass - Random values - Simulated values under a Brownian Motion model along the tree
dat <- list()
dat$mass <- carni19$bm
dat$random <- rnorm(19, sd = 10)
dat$bm <- rTraitCont(tre)
dat <- as.data.frame(dat)
We can combine phylogeny and traits into a phylo4d
object.
p4d <- phylo4d(tre, dat)
barplot.phylo4d(p4d, tree.type = "phylo", tree.ladderize = TRUE)
phyloSignal(p4d = p4d, method = "all")
## $stat
## Cmean I K K.star Lambda
## mass 0.5493887 0.3921068 0.71277467 0.71549137 9.640762e-01
## random -0.3354830 -0.2511157 0.08616936 0.08755503 6.846792e-05
## bm 0.3203271 0.2564642 0.44872615 0.45260713 9.954983e-01
##
## $pvalue
## Cmean I K K.star Lambda
## mass 0.001 0.001 0.001 0.001 0.00100000
## random 0.984 0.984 0.915 0.934 1.00000000
## bm 0.021 0.009 0.001 0.002 0.01228289
phylosim <- phyloSim(tree = tre, method = "all", nsim = 100, reps = 99)
plot(phylosim, stacked.methods = FALSE, quantiles = c(0.05, 0.95))
plot.phylosim(phylosim, what = "pval", stacked.methods = TRUE)
mass.crlg <- phyloCorrelogram(p4d, trait = "mass")
random.crlg <- phyloCorrelogram(p4d, trait = "random")
bm.crlg <- phyloCorrelogram(p4d, trait = "bm")
plot(mass.crlg)
plot(random.crlg)
plot(bm.crlg)
carni.lipa <- lipaMoran(p4d)
carni.lipa.p4d <- lipaMoran(p4d, as.p4d = TRUE)
barplot.phylo4d(p4d, bar.col=(carni.lipa$p.value < 0.05) + 1, center = FALSE , scale = FALSE)
barplot.phylo4d(carni.lipa.p4d, bar.col = (carni.lipa$p.value < 0.05) + 1, center = FALSE, scale = FALSE)